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TYPICAL CLUSTER SIZE FOR 2-DIM PERCOLATION PROCESSES

Bao Gia Nguyen .

Center for Stochastic Processes
Department of Statistics
University of North Carolina

In this paper we discuss the typical cluster size for

I§

2-dim percolation models. We show that, for wo ={x EZZ: 0-+x},

.1 -1 -A .
[-1im pr(lwbl =n)] ~w~|p -pcl as p +p_ provided that

n-+o

EP(IWOIZ)IEp(IwOI)mlp_pcl-A as p tp_. Furthermore, we introduce
a new quantity fs(p), which may be thought of as the singular part
of free energy, and show that fs (p) ~ |p -pc| dv provided that the

correlation length =~ |p -pcl-v as p*p_-

Keywords: Percolation, typical cluster size, singular part of the
free energy

This research sdpported by the Air Force Office of Scientific
Research Grant No. F49620 85 C 0144.
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Section 1: Introduction

. The purpose of this paper is to discuss some characteristics of

the typical cluster size for the self-matching 2-dimensional perco-
‘, LA .
lation models. For simplicity we only descrlbe eﬂr results for the

/
site percolation model on Zz and leave’ the task of extending eur

discussion to general models to the readers. Let us now introduce
L/

the 2-dim site percolation model. Let P& denote the probability

measure under which all sites of the lattice é? are independently

occupied (non-occupied) with probability p (respectively 1 -p).

5. L

We—say that x is connected to y if there is a nearest nelghbor
Subd

\—\_/
path over occupied sites connecting x and y. Let Wd fge kA8 .O-+x}
kx it ”""i“" <
the cluster of occupied sites connected to 0. Our paper is devoted
to the study of certain special properties of the Jt;pical cluster
Svh & Sub @

size" about the critical point p -1nf(p P, (0 ) >0}. _In the
¢ P

el 7
paper "Scaling Theory of Percolatlon Clusters" /[1979], Stauffer 7

- ——'—"fL"r )
suggested the following basic postulate: spporctes linct

"We assume that the critical behavior of percolation is dominat-

-1/0

ed by clusters of size Sgalp-pcl , where differently defined

typical cluster size S, all diverge with the same exponent".

€
Furthermore, he also suggested a scaling hypothesis that

(*) n"*exp(-n/c, (p)) if p <p,
Pp(lwol =n)a

(**) n-C+lexp(-Vn7Cg(P)) if p >Pc

Nevertheless, it was not clear what Stauffer meant by the "typical

cluster size". From (*) we see that

C’ }?c,,,,ce.l b

PN IS AN St ".—:._a‘:‘e‘.r‘r LN SNy ek V‘\ .r,‘_-r X ::".. ; , : Ll o ..-\r-' "("-""-"if A ¢wr .r«'
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(-z+1)+t

t . -
Ep(lwol ; 04 )agn exp ( n/Sg(P))

hence
- t+1‘ o t, - .
Sg () = B ([Wo| 7750 #=) /B ([W |75 0#)
S, (p )'C+3+tf: -c+2+td i
a -
sg( D) ;+2+tf c+1+td
o Sg(p).

Similarly we can also see from (**) that St(p) aSE(p). Thus we
expect from the scaling theory that for each definition £ (p) of

the correlation length there exists a number S, (p) which decays

g
at the same rate as St(p) if p-*pc. We call Sg(p) the typical
cluster size associated with the correlation length £ (p). The- .

concept of correlation length is well studied. The usual defini-

tions for the correlation length are

-1

E(p) = [inf{N :PP(O-*x) <sexp(-|x|/N)}] for p <p_

1
= t > X -] > X oo E
£ (P) = [)Z{le P,(0+x; 0# )/}Z{Pp(o X; 0#=)]

min{n :CRp(n) <e} for p <P.
L(p,e) =

min{n :CRp(n) 21-~-¢} for p >pc

where CRp(n)==Pp ( 3an occupied crossing from left to right of the
box B(n) of size n centered at 0). .
In the definition of L(p,e) it is not important to choose a

precise value of ¢ since we can show that for ¢ smaller than an EO’

" oo ! '\‘\' Sl et -.i
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all the above definitions of the correlation length are equivalent

in the sense that if E(P)::lp'-pcl-v, i.e.

lim logb(p) -V
ptp, log|p -p |

or P +pc

then so do the others. From now on we shall fix € and write

L(p) instead of L(p,e). For further details on the correlation

length we refer the readers to {[CCF, 1985], [N1l, 1985], or [K3, 1986].
Having introduced the correlation length L(p) we now want to

show how to define the typical cluster size SL(p) associated with

L(p). We think of the "typical cluster" as the cluster of all sites

in the box B(L) connected to its boundary 3B(L) by occupied paths

and we define

sL(p) = Ep[#{xeB(L) :x +3B(L)}].

This quantity has already been studied extensively by Kesten in
[K3, 1986] and was shown to play a very important role in the
proofs of scaling relations. As a matter of fact, in that
paper Kesten showed that St(p) and SL(p) are equivalent in the

sense that d constants A ,i

1
£ >0 so that, for t > G

t

S () s S (p) s AS (P).

In this paper we take an additional step to observe from (*) that

SI(p) z {1lim - %logPp(|W0|:=n)]-l

n-+o

aSE(p),

and then show in section 3 that in fact SI(p):zsa(p) as in the
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following

-A
Proposition l: Assume that SL(p):xlp-pc| as ptp_- Then so

. -A
does S (p); i.e. SI(p),,Ip pcl as p 4P,

Note that the limit in the definition of SI(p) exists from the
submultiplicative property of n-lpp(|w0|==n) (see Kunz-Souillard
[1978]). It turns out that the proof of the above result will

be based on the following

Lemma: Let Mt[L(p)] = the tth moment of the number of sites in
the box B(L) connected to its boundary 3B(L) by occupied paths,

i.e.

M (L(P)] = E (| {x eB(L) :x +3B(L)}|*©

Then

t
M, (L(p)] < B,[K;S (P)]

where Bt==(t-+l)! and Kl is a positive constant depending only on

€.

The proof of the above lemma can be found in [K2, 1986] of
Kesten except the fact that Bt==(t-+1)!. In our opinion it is
not easy to see that the Bt's are of order (t +1)! therein since
its proof is based on a rather complicated combinatorial argument.

Since our proof for proposition 1 depends on the Bt's so we shall

give a new proof for the lemma in section 2 with a simple inductive

argument.

We now want to note the following

tad ' R '\} o) .l"t #‘ |.. N ::l :. l".".\.
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Remarks:

(1) If we apply the estimate in the lemma to the argument in

the section 3 of [K3, 1986] we can show that

t o t
(1.1) Ej(IWol 75 [Wol <=) s ¢ [KS (R)] 7 (L)

where np(L) =Pp(0-+3B(L)) and Ct==(3t)! However, the constants
Ct:=(3t)! is not strong enough as they were conjectured by
Stauffer [1979] that Ct==t! for p < Por and that Ct==(2t)! for
P>PpP,-

(2) The scaling hypothesis (**) implies that

-1

. 1
S;1(P) = (lim - = logPp(°° >lwol 2n)]

S
i = @S, (p)

for p >pc.
We believe in the above but we do not know how to prove this.
Having discussed several ways to look at the typical cluster
size we now want to study its role in the singular behavior of

the free enerqgy, which is known as the same as the mean number of

clusters per site,

f(p) = ngl an(iw [ =n).

It was conjectured in [Sykes-Essam, 1963] that the free energy is
singular at P.- It is not clear at all that the free energy has
any singularity since Kesten [K1l, 1982] showed that it is twice
differentiable. The numerical calculations together with the
scaling theory suggested that the third derivative of the free

energy should blow up at P, at the rate |p'-pc|-l_° where the

I S A \ K’ ' W L7 nr\; LRy )"\ ).Hr\,}f"\’v'v‘
Wt .N"'n ot 'a‘.'o"'l‘.’t 1hS .'t .‘ '.'-' W .’n RN ‘l‘ (N '| ity o . Y .'l‘.‘ ..'0 WU .‘Q‘.‘ ! "a‘. "'l". ‘s‘
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critical exponent a is realted to the exponent v of the correlation
length by the scaling relation (R) 2-a=dv , d =2 :dimension.

Thus we expect that the singular part fS ng(p) of the free energy

i
should behave as |p -pc[dv in a neighborhood of P.- However, it
would be difficult to know the singular part since we do not know
whether the free energy has any singularity. While it is not easy

to define the singular part £ (p), to prove the scaling relation

sing
(R) we propose a new way to look at this. It is based on the obser-
vation that if the free energy behaves singularly at pc then only

the tail of the summation in f (p) =2n n-IPp(|W0|==n) should play

21
an important role in this singularity. 1In other words, the mean
number of clusters per site should be singular (if it were so!) due
to the number of "large clusters". But how large the cluster
should be in order for us to see the scaling relationship such as
(R)? Physicists (e.g. Stauffer (1979), Essam (1980)) suggested
that any cluster which is larger than the typical cluster size
should be thought of as the large cluster. From this we believe
that

£ () = ] n'lpp(|w0|=n),

nzGSL(p)

where § is some positive constant, should be thought of as a re-
presentative for the singular part of the free energy. In order
to support our belief, in section 4 we shall apply some recent re-

sults of Kesten (see Kesten's theorem in section 4 of our paper)

to give an easy proof of the

Proposition 2: Assume that L(p):;|p-pc| V as P +pc (or p +pc).

ele 2oL
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Then

where d =2

.... .f

’-" n‘:::: TN

dv
£.(P) ~ |P-P,| as ptp, (or p+p))

: the dimension of the percolation model.
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Section 2:

Fix ¢ as in the definition of L(p,¢). From now on Ce’ée will
be constants depending only on ¢ and their value may vary from
line to line. Let nn==Pp (0 is connected to a vertical line at
distance n away from the origin). It is easy to show

(2.1) 1%x%w+wmns%m)
(2.2) AT

for all n<L(p), where f(p)X g(p) means that I c€,<~:E such that
C.E£(P) sg(p) sC £(p).

Recall that Mt[L(p)] =Ep{|{XeB(L) :x+BB(L)}|t} = Average of number of
sites connected to the boundary of the box of size L(p). We claim

2L(p)
(2.3) M, L@ s C (t+DLPE) [ kgo m M, [L(P)].
To prove this we write
t+l{
(Lpp)] = P (n {x,+3B(L)})
M Py
Xl’ .ee ,xt+leB(L) i=
2L(P) t

I

P ( n {xl+3B(L)} X,

+ 3B (L))
:k=0 xl,...,xteB(L) Py

X +1
t+1

where the index k is the smallest distance from x

t+ltotheset

{x JuaB(L). For a fixed k 24, we have

i=1,--o’t
t
pp( n {xl aB(L)},x

+3B(L), Circuit (k))
i=1 X

t+l t+1

t

< P (n {x,+>3B(L) in B(L)\B (k/2)} and {x +93B (k/2) 1)
p i=1 i xt+l t+1 xt+1
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j where Circuitx (k) is the event that 3 an occupied circuit in the annulus
e t+l
' B (k)\B (k/2) centered at x, ... Then by FKG the
; e+l el trl
¥
M) t+] t+1
oS IHS 2 P, ( n {x; +BB(L)})P (Circuit (k)) =C_ Py n {x; »3B@})
P =1 Pi=1
and
.. t
RHS < P_( n {x,+>93B(L) in B(L)\B (k/2)})P {x 9B (k/2)}
Pi=) * *e41 T Py
b t
< Cepp(.ﬁ {xi->aB(L)})1rk.
i=1
Hence, for such a k 24 we obtain
(e t+1 t
§ P (n{x,+»3B@)}H sCcmP (n {x,+3B(L)}).
o Py ekp,, 1
5
w For k <4 the above inequality is cbvious. Thus we have
. 2L (p)
g M L) < {c, k'—}':-o 8t (k +1)m
«§ L ¢
5 +C_J 8- k+1)m (L -k)) ) Pyl nlx; +3B(1) )
o €k=0 Ryreoe ,xteB(L) i=]1
dv -
: since there are at most 8t(k +1) points which are at the distance
L4
- k from {xl,..., xt} and there are at most 8(L -k +1) points at the
\l
distance k from the boundary 3B{(L) . Clearly the above shows
K, (2.3).
&
N, Remark: In [K2, 1986], Kesten further showed
E 2L(p) L(p)
a
N (2.4) ) m X L m AL (L).
i k=0 k=0 P
W
" Hence, (2.3) implies
: 2
o (2.5) Mt+1[L(p)] < (¢ +1)L(p) ﬂp(L)Mt[L(P)]-
o
|:.
Y
-
0
: RIS ' o, ., 0
) o
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Note that
) T :
M, [L(p)] = P (x+3B(L)) = C L-k+1)wm,_ < K.L°7_(L).
1 xeB(L) P € k=0 k=717 'p
This shows .
2 t+1
(2.6) t+l[L(p)] s (t +l)![K1L (p)ﬂp(L)] ,

where K1 is some positive constant depending only on €.
Before leaving this section we remark that by the same argu-

ment we can show, for t =1,

(2.7) EP{IWOnB(L) ltlo +3B(L)} sc_(t +1)L2n(L)Ep{|w0nB(L) |t'1|o +3B(L) }
and

(2.8) E {|Wj 0B (L) 110 »3B(L)} < (£ +1)! [K2L21I(L)]t

where K2 is some positive constant depending only on €. The in-
equalities (2.6) and (2.8) play important roles in the proof of

(1.1). For a proof of this see [K3, 1986, section 3].

o - .y s ... .‘“““’.' . ‘. .%. ‘:‘l (] .:’l :‘ "‘J . !’ ’ ted .:‘.. ) '.’.l .‘l' “‘u‘\ ."" .‘\.
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< Section 3:

In this section we shall show the proposition 1. First we

u claim
1)
,g (3.1) SI(p) < CESg(p).
- v The proof given here was suggested to the author by H. Kesten. To prove
ﬁ this it is enough to show I Cl,Cz,C3 >0 so that
¥
: >C.kL%1 (L)) < Cexp(-C.k)
(3.2) Pp(IWOI— 1k < C,exp(-Cjk).
3
{: We denote B(n) the boxes of size L(p) centered at gj=(n12L,n22L),
19
s (n;,n,) cz®. we say that n is connected to 0 if d an occupied
o path connecting the B(n) and B(0). Let C={n :0-+n}. It can
'g be seen from the proof of the theorem 5.1 of [Kesten, 1982] that
b3 (3.3) Pp(|c| >k) < C,exp(-C3k)
e
'ﬂ' for some positive constants 62,53. Thus to show (3.2) it is
N
:ﬂ enough to show the exponential decay of pp(|w0| zClkLG(L);|C| <k).
. Note that the number of clusters C with |C| <k is bounded by Cﬁ
~
N for some positive constant C4. Fix such a cluster
:i C=={El,..., Et}; £ <k. Let
i XEi = {x eB(n;) : x+3B(n,)}|.
-
y We have
‘ L]
2 2
P W 2C,kL"m_(L);C SP X 2C. kL m_(L);C
@ p(| Ol 1 p( ):C) ( EeC n, 1 p( )i C)
’ l
" 2
y < inf e FCIKL T (L) g oyny ) rx ):C}
r>0 P nec 4
y - 2 rX
u: < infe rCikL ﬂp(L)[E (e Ql)lﬂ
*\ r>0 p

‘o8
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But
rXn, m -
E(e 1) =] I o E (x ) < Z t+n-m1;r(m] Zr(t+n[an w)E.
p =0 -° ny =0 t=0
Now we choose r==l/2KlL2wp(L). Then
rXn
E (e —1) < 7 (t-+1)( Lt <.
P L 5
t=
Thus _Slk
K
2 . k 1l k
Pp([wol 2 C kL np(L), |C| sk) Cye (Cg)™.
Choose cl 2le0, where xo==logC4C5, to obtain (3.2). Thus from
(3.1) the critical exponent of SI(p) is not larger than A. To get
the other bound we consider
E_(|w.|%) = Zntp ([Wol =n) < } ntnexp(-n|S_(p)) = kS_(p)**?
p 0 n=1 n=1 I I

where K is some positive constant. But in [K3; 1986] Kesten showed

that
Ep(|W0|t > CtSL(p)tﬂp(L)
where Ct is some constant depending on t. Then
s, o (n) kS, (p) **2
Hence,
log$; (p) y logc m (L) ot 1ogkS . (p)
" TegTpE.l T E TeaTe Bl © | ©Z Toslp bl

and then t +», we obtain the result that
-A

Letting p +pc

S;(P) ~|p-p_l
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Section 4:

The proof of proposition 2 will be based on the following re-

sults in [K3, 1986].
Theorem (Kesten):
Let L(p) and np(L(p)) as before. Then we have
(a) E_(W.|:lw,| <=) % 7212 (p)
p ho! Mo P
2
(b) S, (p) X wp(L)L (p)

(c) 3 a positive constant § such that

1
pp(oo> ]wol 2685, (p)) 2 —Z-ﬂp(L).

We omit the proof of this theorem and refer the reader to find
its proof in the combination of the two papers [K2 and K3, 1986].
Once the theorem is established the rest will be easy. In fact
on one hand we have from the Cauchy-Schwartz inequality that

' 1
) nP_(|w,| =n)Il } =P_(|W,| =n)]
n28S_(p) P 0 n26S_(p)" P 0

2 1. ,...2
> [} P_(|Ww, ] =n)1° 2 [5w_(L)]
nzGSL(p) P 0 2'p

by (c) of the above theorem. Thus

1l 2
(/) nP_(|W,| =n)
4'p nzGSL(p) p 0

v

-1
£ (p) = n “P_{(|W,| =n)
s nzégL(p) P 0

v

.nu-- -h$l—‘
'UN TN

(L)/EP(IW0|;|W0| <)

v

(L)/c 1r (L)L (p)

v

) Lo

4C€L (p)
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where in the last inequality we used (a). On the other hang,

1
£.(p) § ——— ¥ np (Iwol =n)

2 P
[53L(p)] n_GSL(P)

—2—2—E(IWI [Wol <)
8“8 (p)

2 2
C.L (p)"p(L) cE

< =
~ 2.2 2 = 2.2
C55 (L (p)np(L)] CEG L™ (p)

by (b). Since L(p)s=|p-pc|-v we obtain the proposition.
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